

The need for persistence

 Consider these examples

 Counting the number of “hits” on a website

 i.e. how many times does a client load your web page
source

 The questionnaire on computing experience

 Somehow your .php needs to remember previous
instances of it being requested by a client

Persistence

 Persistence is the ability of data to outlive
the execution of the program that created
them.

 An obvious way of achieving persistence is
to simply save the data in a file

Persistence and HTTP

Recall http is a stateless protocol. It remembers nothing about

previous transfers

Two ways to achieve persistence:

 PHP cookies

 PHP sessions

HTTP
serverClient

Cookie
Session

HTTP Cookies

In internet programming, a cookie is a packet of information sent from the

server to client, and then sent back to the server each time it is accessed by

the client.

Introduces state into HTTP (remember: HTTP is stateless)

Cookies are transferred between server and client according to http.

PHP supports http cookies

Cookies can also be thought of as tickets used to identify clients and their

orders

How Cookies are implemented

 Cookies are sent from the server to the client via “Set-
Cookie” headers

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN_NAME; secure

 The NAME value is a URL-encoded name that identifies
the cookie.

 The PATH and DOMAIN specify where the cookie
applies

setcookie(name,value,expire,path,domain,secure)

Parameter Description

name (Required). Specifies the name of the cookie

value (Required). Specifies the value of the cookie

expire (Optional). Specifies when the cookie expires.

e.g. time()+3600*24*30 will set the cookie to expire in 30 days.

If this parameter is not set, the cookie will expire at the end of the session (when the

browser closes).

path (Optional). Specifies the server path of the cookie.

If set to "/", the cookie will be available within the entire domain.

If set to "/phptest/", the cookie will only be available within the test directory and all

sub-directories of phptest.

The default value is the current directory that the cookie is being set in.

domain (Optional). Specifies the domain name of the cookie.

To make the cookie available on all subdomains of example.com then you'd set it to

".example.com".

Setting it to www.example.com will make the cookie only available in the www

subdomain

secure (Optional). Specifies whether or not the cookie should only be transmitted over a

secure HTTPS connection.

TRUE indicates that the cookie will only be set if a secure connection exists. Default

is FALSE.

Cookies from HTTP

GET /*.html HTTP/1.1
Host: it026954.domain

GET /*.html HTTP/1.1
Host: it026945.domain
Cookie: name=value

Accept: */*

HTTP/1.1 200 OK
Content-type: text/html

Set-Cookie:
name=value

(content of page)

Client (e.g. Firefox) it026945

Creating PHP cookies

Cookies can be set by directly manipulating the HTTP header using

the PHP header() function

<?php
header(“Set-Cookie: mycookie=myvalue; path=/; domain=.coggeshall.org”);

?>

Creating cookies with setcookie()

Use the PHP setcookie() function:
Setcookie (name,value,expire, path, domain, secure)

e.g.

<?php
setcookie("MyCookie", $value, time()+3600*24);
setcookie("AnotherCookie", $value, time()+3600);

?>

 Name: name of the file

 Value: data stored in the file

 Expire: data string defining the life time

 Path: subset of URLs in a domain where it is valid

 Domain: domain for which the cookie is valid

 Secure: set to '1' to transmit in HTTPS

Reading cookies

<?php

foreach ($_COOKIE as $key=>$val) {
print $key . " => " . $val . "
";

}

?>

To access a cookie received from a client, use the PHP

$_COOKIE superglobal array

Each key in the array represents a cookie - the key name is

the cookie name.

Creating and using cookies
example

<?php

setcookie("MyCookie", $value, time()+7200);

setcookie("AnotherCookie", $value, time()+7);

?>

<?php

foreach ($_COOKIE as $key=>$val) {

print $key . " => " . $val . "
";

}

?>

 Cookies only become visible on the next page load

Using headers (wrong approach!)
<!DOCTYPE html PUBLIC "=//W3C//DTD XHMTL 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhmtl" xml:lang="en">

<head><title>PHP Script using Cookies</title>

<meta http-equiv="Content-Type" content="text/html; chatset=ISO-8859-1" />

</head>

<body>

<?php

$strValue = "This is my first cookie";

setcookie ("mycookie", $strValue);

echo "Cookie set
";

?>

</body>

</html>

Gets an error!:

Warning: Cannot modify header information - headers already sent by (output started at
/var/www/html/TESTandre/159339/PHP/cookie_with_headers.php:9) in
/var/www/html/TESTandre/159339/PHP/cookie_with_headers.php on line 11

(adapted from Stobart & Parsons (2008))

Using headers

setcookie() did not run before information
was sent to the browser...

Cookies have to be sent before the heading
elements

Using headers (correct approach)
<?php

$strValue = "This is my first cookie";

setcookie ("mycookie", $strValue);

echo "Cookie set
";

?>

<!DOCTYPE html PUBLIC "=//W3C//DTD XHMTL 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhmtl" xml:lang="en">

<head><title>PHP Script using Cookies</title>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />

</head>

<body>

<?php

echo “<p> A cookie has been set. </p>”;

?>

</body>

</html>

This is the correct approach!

Deleting a cookie

 Set the cookie with its name only:

setcookie(“mycookie”);

Multiple data items

 Use explode() e.g.

<?php
$strAddress = $_SERVER['REMOTE_ADDR'];
$strBrowser = $_SERVER['HTTP_USER_AGENT'];
$strOperatingSystem = $_ENV['OS'];
$strInfo = "$strAddress::$strBrowser::$strOperatingSystem";
setcookie ("somecookie4",$strInfo, time()+7200);
?>
<?php
$strReadCookie = $_COOKIE["somecookie4"];
$arrListOfStrings = explode ("::", $strReadCookie);
echo "<p>$strInfo</p>";
echo "<p>Your IP address is: $arrListOfStrings[0] </p>";
echo "<p>Client Browser is: $arrListOfStrings[1] </p>";
echo "<p>Your OS is: $arrListOfStrings[2] </p>";
?>

Where is the cookie stored?

Where is the cookie stored

 Depends on the browser...

 e.g., firefox/mozilla under /home/a________

 Look for cookies.txt in .mozilla directory

 Usually under:

 /home/a______/.mozilla/firefox/asdkfljy.default

 Cookie is stored only if there is an expiry date

 Otherwise it is deleted when leaving browser

 Persistent only if an expiry date is set

You can store user information (e.g. username,
items selected, etc.) in the server side for later
use using PHP session.

Sessions work by creating a unique id (UID)
for each visitor and storing variables based on
this UID.

The UID is either stored in a cookie or is
propagated in the URL.

PHP Sessions

When should you use sessions?

 Need for data to stored on the server

 Unique session information for each user

 Transient data, only relevant for short time

 Data does not contain secret information

 Similar to Cookies, but it is stored on the server

 More secure, once established, no data is sent
back and forth between the machines

 Works even if cookies are disabled

 Example: we want to count the number of
“hits” on our web page.

<?php session_start(); ?>

<html>
<body>

</body>
</html>

session_start() function must appear BEFORE the <html> tag.

Before you can store user information in your PHP
session, you must first start up the session.

PHP Sessions

 Starting a PHP session:

<?php

session_start();

?>

• This tells PHP that a session is requested.

• A session ID is then allocated at the server end.

• session ID looks like:

sess_f1234781237468123768asjkhfa7891234g

Session variables

 $_SESSION

 e.g., $_SESSION[“intVar”] = 10;

 Testing if a session variable has been set:

session_start();

if(!$_SESSION['intVar']) {...} //intVar is set or not

Registering session variables

 Instead of setting superglobals, one can register one‟s own
session variables

<?php
$barney = “A big purple dinosaur.”;
$myvar_name = “barney”;
session_register($myvar_name);

?>

• $barney can now be accessed “globally” from session to
session

 This only works if the register_globals directive is
enabled in php.ini - nowadays this is turned off by default

Use of session_register() is deprecated!

Make your own session variables

 With session_start() a default session
variable is created - the name extracted
from the page name

 To create your own session variable just
add a new key to the $_SESSION
superglobal

$_SESSION[„dug‟] = “a talking dog.”;

Use of $_SESSION is preferred, as of PHP 4.1.0.

Session Example 1

<?php

session_start();

if (!isset($_SESSION["intVar"])){

$_SESSION["intVar"] = 1;

} else {

$_SESSION["intVar"]++;

}

echo "<p>In this session you have accessed this

page " . $_SESSION["intVar"] . "times.</p>";

?>

<?php session_start();?>

<?php

$thisPage = $_SERVER['PHP_SELF'];

$pageNameArray = explode('/', $thisPage);

$pageName = $pageNameArray[count($pageNameArray) - 1];

print "The name of this page is: $pageName
";

$nameItems = explode(„.', $pageName);

$sessionName = $nameItems[0];

print "The session name is $sessionName
";

if (!isset($_SESSION[$sessionName])) {

$_SESSION[$sessionName] = 0;

print "This is the first time you have visited this page
";

}

else {

$_SESSION[$sessionName]++;

}

print "<h1>You have visited this page " . $_SESSION[$sessionName] .

" times</h1>";

?>

Session Example 2

Ending sessions

unset($_SESSION[„name‟])

–Remove a session variable

session_destroy()

– Destroys all data registered to a session

– does not unset session global variables and cookies

associated with the session

–Not normally done - leave to timeout

Destroying a session completely

<?php
// Initialize the session.
// If you are using session_name("something"), don't forget it now!
session_start();

// Unset all of the session variables.
$_SESSION = array();

// If it's desired to kill the session, also delete the session cookie.
// Note: This will destroy the session, and not just the session data!
if (ini_get("session.use_cookies")) { // Returns the value of the configuration option

$params = session_get_cookie_params();
setcookie(session_name(), '', time() - 42000,

$params["path"], $params["domain"],
$params["secure"], $params["httponly"]

);
}

// Finally, destroy the session.
session_destroy();
?>

http://nz2.php.net/manual/en/function.session-destroy.php

returns the name of the
current session

Session Example 3
<?php

session_start();

if(!isset($_SESSION['strColourBg'])) $_SESSION['strColourBg'] = "red";

else echo "Currently Bg set to " . $_SESSION['strColourBg'] . "
";

if(!isset($_SESSION['strColourFg'])) $_SESSION['strColourFg'] = "yellow";

else echo "Currently Fg set to " . $_SESSION['strColourFg'];

if(isset($_POST["submit"])) {

$strColourBg = $_POST["strNewBg"];

$strColourFg = $_POST["strNewFg"];

$_SESSION['strColourBg'] = $strColourBg;

$_SESSION['strColourFg'] = $strColourFg;

echo "
New Settings";

}

else {

$strColourBg = $_SESSION['strColourBg'];

$strColourFg = $_SESSION['strColourFg'];

echo "
Keep old settings";

}

?>

Session Example 3 (cont.)
<head> <style type="text/css">

body {background-color: <?php echo $strColourBg ?>}

p {color: <?php echo $strColourFg?>}

h2 {color: <?php echo $strColourFg?>}

</style></head>

<body>

<h2>h2 colour</h2>

<form action = '<?php echo $SERVER["PHP_SELF"] ?>' method='post'>

<label for="strNewBg"> Background colour: </label>

<select name='strNewBg' id='strNewBg'>

<option>red</option> ... <option>grey</option>

</select>

<label for="strNewFg"> Text colour: </label>

<select name='strNewFg' id='strNewFg'>

<option>yellow</option> ... <option>grey</option>

</select>

<input type='submit' name='submit'/>

</form></body>
(adapted from Stobart & Parsons, 2008)

Examples

php_imagefields.php

php_retention.php

upload.html

upload.php

php_imagefields.php

php_imagecreation.php

php_truetypefonts.php

php_file_get_contents.php

php_cookie_multipledata.php

cookie1.php

cookie_with_headers.php

session1.php

session2.php

php_session_colours2.php

php_session_destroy.php

Summary

PHP sessions and cookies are mechanisms
for introducing state into HTTP
transactions.

